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ABSTRACT

A demonstration is given that for two-electron systems the Hartree-

Fock and first natural spin orbitals are different functions. The

method used is perturbation theory for which the zero-order problem is

the Hartree-Fock approximation. A perturbation expansion through the

second order is obtained for the first natural spin orbital. The two

orbitals begin to differ in the second order and their energies in the

fourth order. An equation for the second order part of the orbital

difference function is derived. Estimates of the norms of the orbital

difference functions are calculated for the ground states of the helium

atom and the hydrogen molecule and are found to be small.
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COMPARISON OF THE HARTREE-FOCK ORBITAL WITH THE FIRST

NATURAL SPIN ORBITAL FOR TWO-ELECTRON SYSTEMS

Introduction

Calculations of approximate energies of two-electron systems have

shown that the first natural spin orbital gives an approximate energy

very close to the Hartree-Fock energ ' 2' 3 ' 4 ),- The question has arisen

whether the first natural spin orbital would coincide with the Hartree-

Fock orbital if it were calculated exactly. One would expect the two

orbitals to be different functions because they are defined differently.

The Hartree-Fock orbital is defined to give the optimum energy, whereas

the first natural spin orbital is defined to have the optimum overlap

with the true wave function. In this paper a demonstration is given

that the first natural spin orbital is different from the Hartree-Fock

orbital for two-electron systems even though the difference is small.

The method followed in this paper is perturbation theory in which

the zero-order problem is the Hartree-Fock approximation. The discus-

sion starts with a brief summary of the proof. After that follows a

short review of natural spin orbitals for two-electron systems. The

perturbation scheme is then defined, and an expression for the first

natural spin orbital is developed in terms of the Hartree-Fock orbital.

The difference function between the two orbitals is then discussed, and

its norm is explicitly calculated for the helium atom.

Throughout the discussion the exact wave function of the two-

electron system is always the spatial part of the singlet ground state

wave function. Likewise, only the spatial parts of the Hartree-Fock

and natural spin orbitals are considered. The spin parts are disre-

garded since the Hamiltonian does not contain any spin operators.

(I) H. Shull and P.-O. L1wdin, J. C. P. 23, 1565 (1955).

(2) P.-O. LSwdin and H. Shull, Phys. Rev. 101, 1730 (1956).

(3) H. Shull and P.-O. Lfwdin, J. C. P. 30, 617 (1959).

(4) E. R. Davidson, J. C. P. 37, 2966 (1962).
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In brief, the proof that the first natural spin orbital is differ-

ent from the Hartree-Fock orbital is as follows. The exact wave function

of the two-electron system is first expanded in a perturbation series,

eq. (12), in which the leading term is the Hartree-Fock function. Then

the perturbation expansion of the first natural spin orbital, eq. (14),

correct through the second order in the perturbation parameter is

derived. It becomes apparent, eq. (18), that the difference between the

two orbitals is not everywhere zero. Therefore the two orbitals are

different functions.

The use of perturbation theory is justified by the smallness of the

perturbation. An order of magnitude estimate of the perturbation can be

obtained from the following considerations. The difference between the

Hartree-Fock energy of a two-electron system and the approximate energy

given by the first natural spin orbital should be of the fourth order

in the perturbation 5)" Shull and L~wdin(3) found this energy difference

to be 1.43 x 10-4 e2/a for the helium atom; Davidson(4) obtained

1.57 x 10-4 e 2/a for the hydrogen molecule. Therefore, the pertur-O

bation is small enough to justify a perturbation expansion.

Perturbation Expansion of the First Natural Spin Orbital

In this section, a few properties of the natural spin orbitals are

first discussed. Then the perturbation scheme which is used in develop-

ing the exact wave function of a two-electron system is explicitly

stated. After that, the perturbation expansion of the first natural

spin orbital is developed.

The exact normalized wave function r(12) of a two-electron system

can be expanded in terms of the natural spin orbital 2 ' 4 ' 6 j'7 )%k as

follows:

(5) See footnote (8).

(6) P.-O. LBwdin, Phys. Rev. 97, 1474 (1955).

(7) E. R. Davidson, J. C. P. 37, 577 (1962).
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*~(12) 1) kXl)(2) (1)

k-i

where the 2 are the occupation numbers. The natural spin orbitals

are mutually orthonormal, i.e.

Jk(1)Xk,(1) dt, = (2)

For the purposes of this discussion it is convenient to rewrite the

wave function *(12) as

*(12) = ¶ [•i()l(2) + T(121 (3)

where T(12) contains all of the natural spin orbitals except the first

one. An important property of the first natural spin orbital is that

it is strongly orthogonal to the function T(12) , i.e.

IT*(12)'X (1)d - JC* (1 2 )%1( 2 ) dt2 = 0 . (4)

The perturbation scheme is obtained by rewriting the exact

Hamiltonian H of the two-electron system as a Hartree-Fock Hamilton-

ian H(o) plus a perturbation HM

H - H(o) + )HM 1 ) (5)

where X is the perturbation parameter which is ultimately set equal

to unity. The Hartree-Fock Hamiltonian is

H(°) h°(1) + h°(2) ý6)

where

h°0(1 2 2 + -- +V(l) (7)Vi r
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in atomic units. The Hartree-Fock potential V(l) in which electron

1 moves is

v(l) = TQ)-- O(2) dt2  (8)
r12

The function TO is the Hartree-Fock orbital which satisfies the

equation

h 0(l)5(l) = ýO¶(l) (9)

with Eo as the orbital energy. The Hartree-Fock orbital is normalized

to unity, i.e.

J o¶(1) fo(l) dc1 = 1 (10)

The Hartree-Fock function of the two-electron system is given by the

product To(l)?o(2) . The perturbation term HMI) in the Hamiltonian

is

H(I) - • - V( 1) - V(2) (11)r 12

where V is defined by eq. (8), and r 12  is the inter-electronic

distance.

According to the above perturbation scheme the exact wave function

*(12) is written as ?o(l)fo(2) plus additional terms. The detailed

form of this expansion through the second order in A is derived in

Appendix I, eq. (I,10), and is

*(12) = C o(1)fo(2) + )2[o(1)f(2)(2) + f( 2 ) (1) fo(2

(12)
+ ý $(11(121 + A2S(2) (12) + higher order

.f. S~~~l2) A~s 2 ~(l) + terms

The normalization constant C is also the overlap between r(12) and

the Hartree-Fock function ?o(l)To(2) . The functions f( 2 ) , S(l)
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and S,2) obey the following orthognality relations (see end of

Appendix I),

f () (f ) o(l) dr"1  0 (13a)

fS(l)(12)TO(I) dtl - 0 (13b)

and

f S(2)(l2)?o(1)dt - 0 (13c)

From an examination of *(12) given by eq. (12) it is seen that

the second order expansions for the first natural spin orbital and the

function T(12) appearing in eq. (3) are

%10) - To(1) + A2f(2) (1) (14)

and

T(12) - S(1 )(12) +)ý2 S(2 )(12) ( (15)

The overlap between T(I) and I 1(1) is equal to unity, through

the second order, since To(I) is orthogonal to f(2)(1) , eq. (13a).

Therefore, the overlap C between *(12) and To(l)? 0 ( 2 ) is approx-
imately equal to %I ' the sldre root of the.fi,-. t occupation number.

The two following observations indicate that eqs. (14) and (15)

are the correct second order expansions. First, substituting the two

expansiom into 4(12) given by eq. (3) and keeping terms only through

the second order in ) gives the correct form of *(12) through the

second order, eq. (12). Second, the perturbation expansion of the

first natural spin orbital, eq. (14), satisfies the normalization

condition, eq. (2) with k - k' - 1 , through the second order in .

i.e.

f (1) +22f(2)(1)] [T(,) +2f"(2)(13 d 1
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by virtue of eqs. (10) and (13a). The two expansions also satisfy,

through the second order, the strong orthogonality condition, eq. (4),

i.e.

f S()(12) + 2S(2)(12 o*[?(1) +12f(2)(ij dt1  - 0 (17)

by virtue of eqs. (13b) and (13c). Therefore, it can be concluded that

eq. (14) is the correct second order expansion of the first natural

spin orbital for a two-electron system.

From eq. (14) it is apparent that the first natural spin orbital

1 is different from the Hartree-Fock orbital 5o . The difference

between the two orbitals, up through the second order in ) , is given
by the difference function(8) f( 2 )

The Difference Function f( 2 )

The equation which the difference function f( 2 ) satisfies (see

Appendix II, eq. (11,6)) is

(ho0d() - E 0) f (2)(l) X (2) TO(1) -tS (l) (12) H(l) To(2) dt 2  (18)

where the function S( satisfies the equation

H(HO) - 2) S(l)(12) - (1() - H (l b(E)50( 1)F(2) . (19)

The quantities EM and E(2) are the first and second order energies

of the two-electron system and are given by the well-known eqs. (11,3)

and (11,5).

From eq. (19) it is apparent that S(1) is not everywhere zero.

Therefore it follows from eq. (18) that the difference function f( 2 )

is not everywhere zero. Thus, the first natural spin orbital begins

to differ from the Hartree-Fock orbital in the second order.

(8) From eq. (14) one can verify that the Hartree-Fock energy begins to

differ from the first natural spin orbital energy in the fourth
order. This result is obtained by taking the expectation value of
the Hamiltonian H , eq. (5), wMi ^X(l)^i(2) and making use of
the form of the perturbation H , eq. (Il).
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An estimate for f(2) can be obtained from a sufficiently good

approximate two-electron wave function by the following method! 9 ) Multi-

plying *(12) , eq. (12), by T0(2) , integrating over the coordinates

of electron 2 and taking the orthogonality relations, eqs. (13a), (13b)

and (13c), into account, we obtain

f( 2 )(1) 2$ f*(12)fo(2)dt 2 - To() (20)

where

C ( l2)fo(1)fo(2) dt 1dt 2  (21)

Equation (20) is an approximation because the formula gives f(2) plus

higher order contributions. The norm of f(2)(1) in general is defined

to be

lf (2)1 . f(2)(l)f(2)(1) d) (22)

In terms of the two-electron wave function of eq. (12),

I f( 2)l I l (1 + -§f~f*(12)fo(2)dt (12)f(2)d: d) (

)(23)

Equations (21) and (23) were used to obtain an estimate for the

norm of f(2) for the case of the helium atom. The normalized Hylleraas

functio p
0 )

*(12) = (1.380) 11 +(0.3534)u + (0. 1282)t 2 
- (0.1007)s

-r (24)

+ (0.03305)s2 - (0.03173)u
2J exp(-l.818s)

(9) This method, due to 0. Sinano lu, was comnunicated to us by D.

Tuan.

(10) E. A. Hylleraas, Z. Physik 54, 347 (1929).
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was taken as an approximation to the exact helium wave function. The

variables a, t and u are the well-known combinations a - (r 1 + r 2 ) ,

t - (r1 - r 2) and u -r 12  where the r 1 , r 2 , and r 1 2  are

expressed in units of a -ý2 i/e 2  with A being the reduced mass of

the helium atom.

The difference function f(2)(1) , eq. (20) has the form

f(2)l() - •c - ?o() (25)

where
2•F•Odr__ r+r22 rr2

IM - 421t r 12 r-r2 1 dr 2 r r (12) f•( 2 ) (26)r(1 1 _.0 2 rr- 2 212

The following analytic approximation( 1 1) to TO(2) was used

(2) - (2.968466) [ exp(-1.455799 r2) + (2.00) exp(-0.8734794 r2 1 (27)

Here r 2  is in units of a . The function I(1) turned out to be

(with r 1 in units of a° ):

11) - [(0.1196) exp(-1.818 r1) - (0.1092) exp(-5.092 r1)

- (0.01041) exp(-6.547 r1)} r11 + (1.037) exp(-1.818 r1)

(28)
- (0.08935) exp(-5.092 r 1 ) (0.01231) exp(-6.547 r1)

2

+ (0.08650) exp(-1.818 rl) r1 + (0.1286) exp(-1.818 rl) r 2

The coefficient C , eq. (21), is

c - 4,nf dr 1r 1 )o(l) - 0.9961 . (29)

(11) L. C. Green, M. M. Mulder, M. N. Lewis and J. W. Woll, Phys. Rev.

93, 757 (1954).
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The norm of f( 2 ) , eq. (23), is

l Ii (2)11, (-1i + A fdrlr I2l)I(l)) 0.002 , (30)

Thus the norm of f( 2) is very small compared to unity, the norm of T0.

The overlap between the Hartree-Fock and first natural spin

orbitals, through the fourth order, is

fo(1)AI(l)dr I (1 + f(2),12)' - 0.999998 (31)

Our value for the overlap is higher than the value obtained by Lowdin

and Shull¶2) 0.99995080 . Sinanollu has mentioned that as one improves

an approximate two-electron wave function, the magnitude of the function

f( 2 ) is reduced. Since the energy obtained by LOwdin and Shull is

-2.8785973 e 2/a as compared with -2.90324 e 2/a obtained by Hylleraas,(0)

the wave function calculated by L~wdin and Shull has a larger f( 2 ) than

the Hylleraas function, eq. (24). Thus, the above overlaps are in the

correct relationship.

Davidson(4) has examined the natural spin orbital expansion of the

Kolos and Roothaan wave function for the hydrogen molecule. He obtained

0.999982 for the overlap between the Hartree-Fock and first natural

spin orbitals of H2 . Therefore, the norm of the f( 2 ) associated

with the Kolos and Roothaan wave function is approximately 0.006 .

This value is small compared to unity, the norm of the Hartree-Fock

function for H2
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APPENDIX I

Perturbation Expansion of an Exact Two-Electron Wave Function

In this appendix a derivation is given of the form which an exact

two-electron wave function ,(12) must necessarily assume if it is

developed according to the perturbation scheme described by eqs. (5)

through (11).

If the exact two-electron Hamiltonian of the system is decomposed

according to eqs. (5) and (6), then the two-electron Schr~dinger

equation which 4(12) satisfies can be written as

(h°(1) + h°(2) +IH(1)) *(12) - Z,(12) (I,1)

where E is the exact energy of the two-electron system.

The zero-order two-electron problem associated with eq. (I,1) is

(h°(1) + ho(2)fo(l)fo(2) - 2fofo(1)f0(2) . (1,2)

Therefore 4(12) must be written as the solution of the zero-order

problem, o(1)fo(2) , plus some other functions.

The one-electron problem equivalent to eq. (1,2) is

h 10l - 66fo( 1) . (1,3)

The one-electron Hamiltonian h0 (1) , eq. (7), is

h°(l) - -•V 2 (l) _ r + f fo(12 di2 (1,4)

with the Hartree-Fock potential V(l) , eq. (8), written out explicitly.

It should be noted that the operator h (1) in eqs. (I1,) to (1,4,)

depends on the unknown function T0 "

After eq. (1,4) is solved for Fo , one can use the operator

h°(1) with ? fixed to define the following eigenvalue problem

h°0 (1) ?(k1), = k~k( 1) k - 1, 2, (1,5)
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The two-electron wave function *(12) can be expanded in terms of

products of the form ?i,(')f(2) where i,j - 0, 1, 2, ..... In these

products the orbital# are any solution of eq. (1,5) or the Hartree-Fock

orbital o 0 Therefore the perturbation expansion of *(12) through

the second order in X is

4(12) - C+()f(2c+ + ( ) Xc(21 j( (2)

c(o~) i2) trm (1,6)

+ higher order terms,

where C is the normalization constant. The sunmation sign includes

integration over the continuum while the asterisk implies that the

subscripts i and j are never both equal to zero.

The perturbation expansion of eq. (I,1) is obtained by substituting

into eq. (1,1) *(12) from eq. (1,6) and I from the well-known

expansion

E - 2E., +)1(l) + 12,(2) + ... . (1,7)

Collecting coefficients of ý and X 2 one obtains, respectively, the

well-known expressions

CM, <T i lTJ (2) 13(1) H (l) ?o(1fo(2) (

ij (Ei + k - 2Fo) 8)

and

*( 1) 211l H(1  (l ) (2)>o(2) •. E (l•f(),1 - () I m('>.2)f
iJ = (! +•J 2Eo)

- m,nO0 

(1,9)

~ (•m(l)•(2)Jl)M - H(l) Io( o(2)>
x <fm( n(fm + En - 2o)

where the brackets are a short-hand notation for the integrals. A

straight forward calculation shows that the integrals
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(1?i(1)?(2)II(l) - H() 4?o(l)?.(2)> Vanish if at least one of the
subscripts i or j is equal to zero.

Substituting eqs. (1,8) and (1,9) into eq. (1,6) one obtains the

desired second order expansion of 4(12) , namely

4(12) - C o(11) (2) + )2[f(2)(l)o(2) + o(1)f( 2)(23

(I,10)

+ )S(l)(l2) + X2S(2 (12) + higher order?+ )'(1)(2) +•'2s2)(z) + terms "

The functions f( 2 ) ,S) and S (2) are

f(2)(1) . (2)io Ti()(,la

i-i

S(1)(12)- • CO CM i(1)f+ (2) (I,11b)

ij-1

and

S( 2 )(12) - (2) c) (l)?J(2) (I,1c)

XijJ~
i ,i-l

Since the Hartree-Fock orbital r is orthogonal to all of the orbitals

(k - 1, 2, ... ) , the above three functions have the orthogonality

properties given by eqs. (13&), (13b) and (13c).
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APPENDIX II

Equation for the Difference Function f( 2 )

In this appendix the equation which the second order difference

function f( 2 ) satisfies is developed by straight forward perturbation

techniques.

The equation for f( 2 ) is obtained from the two-particle

Schr~dinger equation

H*(12) - 14(12) (i1,1)

by decomposing the Hamiltonian according to eqs. (5) and (6), expanding

E according to eq. (1,7) and writing for *(12) the perturbation

expansion given by eq. (12). Equating coefficients of A and 2 one

obtains, respectively,

(H~o) - 2) S~ 1)(l2) - (()-H() (l ) 2)(,)

where

(I " ff:lo 2 HF1)(()fO(2)dt 1dt2  (11,3)

and

(H<o) - 2) [(2) (1)() + (2)(~ S(2()- E ) s 2

If E (1)f (2)] + (~ -H(') 2t) (12) (11,4)

where

E (2) =// (1)*(12) HM1)fo(1)?o(2)d~idr-2 (I
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Multiplying eq. (11,4) by fo(2) , integrating over electron 2 and

taking eqs. (13a), (13b) and (13c) into account, one obtaf us the equation

for the difference function f( 2 ) ) namely

(1) - 10)f (l) - ,(2) o(1) -fSlj 12)H 0(2)dtZ (11,6)

where 3(2) is given by eq. (11,5) and S(1) satisfies eq. (11.2).


